
Theoret. chim. Acta (Berl.) 30, 81--93 (1973) 
�9 by Springer-Verlag 1973 

RPA Method Applied to Molecular Crystals 
Masashi Tanaka and Jiro Tanaka 

Department of Chemistry, Faculty of Science, Nagoya University, Chikusa, 464, Nagoya, Japan 

Received December 19, 1972 

A new theory is presented on the excited states of molecular crystals by using the random phase 
approximation (RPA). The method is applied to the analysis of the absorption spectrum of anthracene 
crystal. The Davydov splitting for the long axis polarized band is calculated as about 9200 cm- t 
while the observed value is 9000 ~ 12000 cm- 1. In the earlier theories, much larger values are reported 
and a simple dipole-dipole approximation gives the value of 32 000 cm-~. The general feature of the 
crystalline spectra is well predicted. 

Es wird eine neue Theorie der angeregten Zustiinde yon Molektilkristallen vorgelegt, die mit 
Hilfe des RPA-Verfahrens gewonnen wurde. Die Methode wird zur Interpretation des Absorptions- 
spectrums yon Anthracenkristallen verwendet. Die Davydow-Aufspaltung des polarisierten Bandes 
(lange Achse) wird mit 9200 cm -1 berechnet (der beobachtete Wert betr~igt 9000~ 12000 cm-1). 
Nach den glteren Theorien erh~ilt man viel gr/513ere Werte, und eine einfache Dipol-Dipol-Approxi- 
mation liefert 32000 cm-1. Das charakteristische Bild des kristallinen Spektrums wird gut wieder- 
gegeben. 

1. Introduction 

The theory of the random-phase (RPA) approximation widely used in nuclear 
and solid state physics has been applied to the study of electronic correlation in 
molecules [1-2].  The method uses the Bose second quantization for the electron- 
hole pair to describe the excited state and the excitation energy is given by 
diagonalizing the Hamiltonian matrix for these sets. It covers the effect of electron 
correlation than earlier theories and gives better results in the calculation of 
energy and oscillator strength of complex molecules. 

In the study of the molecular exdton states, Agranovitch [3-4]  was the first 
who used the second quantized version of the electron-hole pair Hamiltonian. 
Although a formal theoretical treatment has been published, actual calculations 
by this method has not been appeared as yet. Philpott [-5] derived a similar 
equation as Agranovitch [-3] starting from a classical theory of light and in- 
vestigated the contribution of dipole-dipole interactions to the Davydov splitting 
of anthracene, tetracene, naphthalene and phenanthrene crystals. 

In our previous paper I-6] an alternative new approach was presented to the 
analysis of the electronic absorption spectra of molecular crystal, in which the 
crystal exciton configuration is constructed from the one-electron excited con- 
figurations of the SCF molecular orbitals in the constituent molecules and the 
mixing between the different exciton configurations has been taken into account 
using the complete Hamiltonian of the crystal. In the present paper, we consider 
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the effect of electron correlation by using the RPA method and derive the equation 
which is non-Hermitian. The equation is applied to the calculation of excited 
states of anthracene molecule and crystal [7]. 

2. Theory 

The Hamiltonian for a crystal containing N unit cells and a identical molecules 
per unit cell may be written by 

oeg= - ~ Au + Z V(Rpea-v u) + 2 .~ r.~ 
pea 

(1) 

where the summation is taken over all ~z-electrons in the a N molecules of the 
crystal and the prime in the third summation indicates that the terms for which 
/~--v is omitted. V(Rpe,-  r,) is the attraction potential energy between the 
#-th electron and the a-th core atom at the e-th site of the p-th unit cell and e2/r,~ 
is the electrostatic repulsion between z~-electrons ~ and v. Then, the Hamiltonian 
of electron field in the second quantized form is: 

pea 

1 e 2 
+ ~- Sj'~*(~) ~,*(v) ~ (v )~(~)&.  &~ 

F#v 

(2) 

where tp*(p) and p(p) are the creation and annihilation operators of the electron 
field which will be given by the one-electron molecular orbital as shown below, 
the argument denotes both of the space coordinates and the spin of the electron, 
and dr is the volume element including spin. 

Let ~ope i be the i-th SCF-MO of the pc~-th molecule written as linear combina- 
tions of L6wdin's orthogonalized atomic orbitals [8]: 

where 

q)pei = Xpe, Cai (3) 
a = l  

, 

X q f l  b = (1 -1- ~'Jlpea,qflb Xqf lb  " 
q = l  f l= l  a = l  

Xqt~b is the 2p7: atomic orbital on the atom b in the molecule qfl and (1 + S) is 
the overlap matrix with elements: 

(4) 

Then, all the MO's in the crystal are orthonormalized to each other: 

(%ei I ~oq~j) -- S ~0pe~(~) q,q~(~) av~. (5) 
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These MO's satisfy the Hartree-Fock equations as follows: 

h2 occ } 
-- 2~m Au + 2 V(Rp~ -- ru) + 2 (2Jp~h(P) -- Kp~h(l~)) qop~i{/~) = eieOpa,(la ) . 

a h 
(6) 

Here, e i is the orbital energy and Jpah(P) and Kp~h([2 ) a r e  the Coulomb and the 
exchange operators defined by Roothaan [9]" 

and 

Jpah(#) %~i(P) = e2 ~ {o%h(v) %~h(V) ~p~i(P) dv; 
rgv 

Kwh(V) 9p,i(P) = e2 ~ ~p%h(V) %~i(V) q~ p,h(~t) dye. 
r/~v 

(7) 

Now, the field operator q~(p) can be expanded as linear combinations of spin- 
orbitals ~bp,~(p)= ~om(#)~/(p) were t/(#) is the spin function: 

~p(P) = ~ apai ~)p~i(l~) . (8) 
pr 

+ and ap~i are the creation and annihilation operators of the The operators ap~ 
electron which satisfy the following Fermi commutation relations: 

+ a b j +  + + = 0  apa i aqfl j apa i 

ap~ i aqpj + aq#j apa d = 0 

+ + (~pcti, qflj" ap~i aqllj + aqllj apai 

(9) 

Substituting Eq. (8) into Eq. (2), the Hamiltonian becomes: 

where 

and 

+ 
-'~ E 8i apMap~i 

p~i 

+ p~:iE qflJE pai s, �9 V(Rs, a - - r . )  ~qM ap~ia@j 

apaiaq~j 
pM qflj 

l~i qflj sTk t61 

(r I V(Rs,~. - r~)l ~)qflj) ~" ~ {~i (] l )  V(gsy a -- rla ) ~)q~cj(#) dzu 

= II r r@ r d.. 

(10) 

(11) 
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Denoting the ground and excited states of the Hamiltonian W by 10> and IE>, 
the excitation operator A+(E) and the Hermitian conjugate operator A(E) are 
defined as follows: 

A+(E) 10) = IE) (12) 

A(E) 10) = 0.  

Then, the operators A+(E) and A(E) satisfy the Bose commutation relation 
[Eq. (13)] and the equation of motion [Eq. (14)]. 

(0[ [A(E), A + (E')] 10) = (0l A(E) A+(E ') - A+(E ') A(E)10) 

= (EIE'> (13) 

~E,E' 
and 

[-~, A+ (E)] 10) = AE A+(E)10) (14) 

where A E is the energy difference ( E -  E0) between the excited state and ground 
state and is usually called as the elementary excitation energy. The Hamiltonian 
can be diagonalized by using the operator A+(E) and A(E) as follows: 

= Eo + Z AE A+(E) A(E). (15) 
E 

This may be easily proved by substituting Eq. (15) into Eq. (14). 
In molecular crystals, the exciton states can be characterized by three indices 

f, #,k [-6] and the operator A(E) is rewritten as A(E)= Ayu(k ) where k is the 
wave vector, # characterizes the exciton state and f numbers the excited states 
of molecules in the crystal. Then, the exciton state function 7Jf~,(k) and the locally 
excited configuration 0p~ ~ can be expressed in terms of the operator representation: 

7tyu(k) = A•(k)10) , 

0~  j + (16) 
= apot~apoti 10>. 

It was shown in our previous paper [-6] that the wave function ~'f,(k) can be 
approximated by the linear combinations of the configuration 0~'J: 

~P f,(k) = (N ~)-1/2 Z Z eik'"P C{~ j(k) B,,(k) vp~O '~j . (17) 
ij pot 

Comparing Eqs. (16) and (17), the operator A~u(k) can be given by the unitary 
transformation of creation operator apotj + ap~i for the electron-hole pair as follows: 

A ~(k) = (N a)- 1/2 ~, Z eik'R" C{~ j(k) Bot~,(k) ap+ja,oti 
ij pot 

+ 
-~ ~ ~ e ik'Rp U~,ij, yuk apot~ap~,i . 

ij pot 

(18) 

However, Dunning and McKoy [2] has shown that the operators A.~,(k) and 
Afu(k ) are defined as linear combinations of the electron-hole creation and 
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+ + in order to take into account the annihilation operators apotjapa i and apot~apotj 
effect of electron correlation. The ground state wave function to first order is 
represented by the expansion: 

[0) = ColHF ) + ~ ~ Cpotij, qflkl a~ j  apoti a~t  aqaklHF ) . (19) 
pal j, qflkl 

Now, IHF) is the Hartree-Fock ground state. The subscripts i and k are used 
to denote the occupied molecular orbitals, and j and l are employed to label 
the vacant MO's and m, n and h describe all MO's without differentiation. The 
second term implies a double excitation. Then, the single excited state is expressed 
as a linear combination of wave function obtained in two ways: (1) by exciting 
from the HF ground state or (2) by de-exciting from one of the doubly excited 
components. Then, the excitation operator A-f,(k) is given by the following 
equation: 

A}-,(k)= ~ ,  ,k.. , ,  + + e tu~ij, fzkapotjapoti - -  votij, f z k a t ~ i a p r ~ j  } (20) 
i j  pot 

and its Hermitian conjugate Ay~,(k) becomes as follows: 

A , , ( k ) =  v* § ".  r~ twf l~k,ot i j~pot iapot j - -  f~tk,MjapotjUpcti l  (21) 
ij pot 

The pair operators are shown to satisfy the following commutation relations 
by using the Fermi commutation relations (9): 

+ 
[a~jap~i, a~zaqlJk] = + [apotiapotj, a~kaq~z] = 0 

+ 
[apotiap=j, a~taqpk] = + + (Spoti,qflk(~ potj,qfll - -  apot~,qlJkaq~zapotj - -  tSql~t,potjaql~kap= i 

+ + 
[ apotjapoti, a ~ k a q ~ l ]  ~- _ (~ poti, qflk (~ potj, qfll -~- r poti,q#kapotjaq#l + (~ potj, q~lapotiaq+flk �9 

(22) 

If the strict Bose commutation relation is used instead of the commutation 
relations (22), the transformation of Eqs. (20) and (21) becomes unitary and the 
coefficients are orthonormalized as follows: 

2 { U f ~ k , p ~ i j U q f l k l ,  f t & l - - V f t l k , q f l k I V p o t i j , f # k }  - -  (~potij, qflkl 
f ~tk 

(23) 

pot ij 

where Upotij ,  f # k = eik'Rpuotij,f l~k and VnotO,f ~k = eik'Rpvaij, f l&. 
This approximation is strict if the excitation density of the system is small, 

i.e. if the expectation values of the number of the electron-hole pair for the states 
under consideration are much smaller than the total number of electrons in the 

+ + 
system. Then, apotjapoti and apot~apotg can be expressed by the operators A f t ( k )  
and A f , ( k )  as 

+ apotjapoti ~ ~ S u ,  ~ - i k ' R p A +  [I.X t f lzk,otij  r" z'Jtflg~lt') "]- Votij, f , u k e ~ k ' R n a f l ~ ( k ) }  
f ltk 

(24) + apotiapotJ 2 -(v* - i k . R p . 4 +  t'I.X = t f~k ,ot i j  e ~ f z t n , )  "}- uo~tj, f ~ k e ! k ' l l P A f u ( k ) }  
f ,ut~ 
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and the Hamiltonian becomes as follows: 

H = E o + ~ Efu(k)  A L ( k  ) Ayu(k ) .  (25) 
f uk 

By using the Hamiltonian (10) and the Fermi commutation relation (9), 
the commutator [~/f, a + j a m ]  becomes as follows: 

[ H ,  + - Ei) ap,jap~i a m a p j  = (ej + 

@ Z 2 {(~)qflm [ Us~ ]~)pctj) aq+pmat..i -- (~bp.i I Usv I q~,#m) ap+~jaq#m} 
qllm s'~ 4: qfl 

+ Z Z {(q~qPmCPsen I qbp~idpp~J) - (d?qpmq~p~Jl ~bp~iqb~e.)} aq+a..asr. 
qflm s'~n 

I ~ 2 s  ] + 
qflm s7 ( \  l h  / 

(26) 
o G e  

qflm sTn tbh 

ap~ti aqflrn atbh asrn 

qBm s~n t,~h 

~lpa jaqflmatbhasyn 

o c c  

where U~(#) = • V(Rp,  a - r~) + ~ (2Jp,h(/0 - Kp~(#)). 
a h 

Neglecting the interactions of the hole-hole, electron-electron, multiple 
electron-hole and retaining the first term and part of the second and third terms, 
Eq. (26) reduces to a simple form: 

[yg, + ap~jap~i] = ~ (A eij, k l + Dij, kl) + apctl apa:k 
kt (27) 

+ Z y  + + { Ip ,  ij, qfk t aq~, aq, k + Jpaij, q#kl aqa, aqt~t} . 
kl q# 

The symbols A eij, kl, Ou ,  ld , Ip~ij, q#k I and Jp~ij, q~kl are defined as follows: 

A eij.kz = 6~,~,Sj, i(ej - ~) 

Dij, kt = Z {6i,k@p, tl Uq~l%,j)-,~,,j(%,,I Uq~lq%k)} 
qB 4~ p~ 

and 
J,,~ j, qt~kt = 2 6 S ( (P qak q) qaZ [ q~ ,,* (P p~) - ( q~ qak q~ , , j  ] r p~Z (P qpz) (28) 
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where 6 s = 1 for the singlet state and (i s = 0 for the triplet, 

and 
e 2 

l'lz v 

Substituting Eq. (24) into Eq. (27), Eq. (27) can be expressed in terms of the oper- 
ators A]u(k) and Afu(k): 

where 

and 

+ V_~e, a~,,jap, i-I 

- -  21e-'k'""A~(kl2Z[G~k,,,ij(k) Ufuk,akt* +H~k,,ij(k), V,t'~,k,* t~kt] 
f #k l kl fl 

+ elk '~,Afu(k)  ~ ~ [G~ij.~kl(k) VpU.f,k + H~ij.pk1(k) U~kz.fuk] } 

, , , V '  I e -  ik. (Rp- R q )  G~i j tjkl(k) = 5~, t~(A eij kZ + Dij, u) + ~ p~,ij,q~kt 
q 

(29) 

Uo:ij,•kl(k) = 2 "paiLt q#kl ~ ' ' - i k ' (Rp-Rq)  . (30) 
q 

On the other hand, by using Eqs. (24) and (25) and the Bose commutation 
relation of the operators Af,  (k) and Aft, (k), the commutator becomes as follows: 

[ ~ ,  + 
ap~j apai] 

* -- ik.  Rp + = ~_, Efu(k) {ufug, aije A f u ( k ) -  vf,k,aijea~'RvAfu(k)}. 
f ,uk 

(31) 

By comparing Eqs. (29) and (31), the eigenvalue equation can be obtained and 
written in matrix notation as: 

UE = G U  + I-IV 

- V E  = G V + H U  (32) 

where the amplitudes U and V are normalized to an indefinite metrix as shown 
in Eq. (23): 

U + U -  V + V = I .  (33) 

Comparing the above equations to the equations used in our previous theory 
[-6], the earlier formula corresponds to the equation UE = G U by neglecting 
the vector V. The H matrix takes into account the effect of the doubly excited 
configuration and allows for the contribution of the n electron correlation to the 
single excited state. 

The excitation energies are the eigenvalues of a non-Hermitian matrix and 
can be obtained by transforming Eqs. (32) into a single equation: 

(U + V) E: = (G - H) (G + H) (U + V). (34) 
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Putting the vectors U and V in the following forms: 

U = �89 { ( G -  H) 1/2 w E  - t / 2  + ( G -  H) -1/2 w E  1/2} 
(35) 

V = �89 {(G - H)  :/u w E  - w z  - (G - H) -1/2 w e l l 2 } ,  

the new vector satisfies the orthonormalization condition by Eq. (33) as 

w + w = 1. (36) 

Namely, w is unitary and Eq. (34) reduces to an equation for w: 

w E  2 = (G - H)  :/z (G + H)  (G - H)  :/2 w . (37) 

This is a usual eigenvalue equation for a Hermitian matrix. 
Defining the eigenvector x and eigenvalue ~t: 

(G - H) x = x J, 

x + x  =1  (38) 

(G - H)" = x2"x  + , 

Eqs. (36) and (37) can be expressed by using the new vector y = x w  as follows: 

y E 2 = (,~2 + 2,L:/2 x+ H x 2l/2) y 
(39) 

y + y =  1 
and 

U + V = x , ~ : / 2 y E  -: /2  
(40) 

U -  V = x j , - 1 / 2 y E  t/2 . 

In order to reduce the above matrix elements to those of the integrals over the 
atomic orbitals, it has been shown [-6] that the following approximations are 
valid: 

(~OPa~iq~qflJlq~syk(Pt6l) = (~Pet, qfl(~sT,t6 2 2 CtaiCtajCbkCtbl e2 ]gp,a--Rsebl.  (41) 
a b 

Then, the elements G, ij.au and H~ij, ak ~ can be approximated as follows: 

G:,O,t~ u - H~,ij,~kt = 6~,t~ {(A ~ii, u + Dij, kt) + (<P p~,k qg p,,jl qg p~i ~Pp,a) -- (q~p,a qgpo, j lqgp, i ~Pp~k)} 

H~i j, #kl = (~ ,, ~ {2 6 s ( q~ p,k q) p,z [ q) p~ti qJ pc~ j) --  ( q) p~k (P p~ j l ~O p~ti q) pM) } 

+ 26s  ~ e- ik .(Rq - Rp)  (q)qf lk  r ~Ppo~i q~p~). (42) 
q~p 

Using the above approximation, Eqs. (38), (39) and (40) are reduced to the simple 
equations: 

(,~j --  e i - -20 )  Xij, 00~ 

q- Z {Dij,kl -}- (q2P'k ~Op~j I ~Op=i ~Op~l) --  (r qgp,jl(Pp=i fPp,k)} Xkl, e" = 0 
kl 

(22 - Eyu(k) 2) YQ..Iut. + Z Vo..,t~ Y,a.fut. = 0 (43) 

Vo~.,a = 22~/2 2 Z "+ rr  .. ~:/2 "'Oct, ij a aai j, flkl "Vkl, tiff ~'~q 
ij kl 
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and 
(U + V)~iH.~ ~ 1/2 -1/2 = Xij. Q~ e YQ~.fukEf~(k) 

Q (44)  
( U -  V ) a q , f #  k = 2 xiJ, Qet2; 1/2 Y o ~ , f s a E f ~ (  k ) l /2  " 

9 

The dipole moment operator is given in the second quantization formalism: 

r Z Z + (45) = dqfln, petm aqfln apetm 
petm qfln 

where 
dqfln, po~rn = ~ q )~n(~ )  FSq)pctm(#) dl)s"  

Again, retaining only the electron-hole interactions, this is reduced to 

r 2 2  + + = dp~j.p~i(ap~jap~ i -k apetiap~j). (46) 
' pet ij 

The dipole transition moment to the singlet state f # k  is defined as: 

Ms, k = (NG) -1/2 (0[ rl f # k )  (47) 

or, by using Eqs. (12) and taking into account the spin, 

Mis k = - (Ncr)- 1/2 (0[ [A;.(k), r ] ]0)  (48) 

= (2N/~r) 1/2 •t, Z (u + v)etij,fskdpeti.p~j 
etlj 

where 3k = 1 for k = 0 and 3k = 0 for k r 0. The vectors u and v may be expressed 
as products of two coefficients as is seen in Eq. (18): 

ueti~,f.g =(Ncr) -1/2 PiY~j(k) Bets(k) 
and 

Gij, f sk = (N a)- 1/2 Q{U~i(k) Betu(k) (49) 

where PiC"~ (k) and Q{~j(k) can be determined by solving Eqs. (43) and (44) and 
Bet s(k)'s is found by the symmetry operation of the factor group of the crystal. 
Then, the transition moments are defined as follows: 

The oscillator strength f is given by: 

f = 3 x 0.08753 Efs(k  ) IMfsk[ 2 (51) 

where the excitation energy Eys k is given in eV and Mis k is in A. 
The similar equation of molecule has been given by Dunning and McKoy [2] 

and is reduced to the equations suitable for numerical calculations by the same 
procedure as above-mentioned: 

% -  ~ - ,~) x~j, ~ + F, {(~0k q~jl qh q~t) - (~ol q~[ qh ~ok)} x~, o = 0 
kl 

2 2 (& - E~) yo.~ + Y~ vo . , y , .~  = o 
q 

Von, = 2jtlo/2 2 2 xQ,* 'i {26s(q~ (~~176 ~,,k,'~,~ ~/2 (52) 
ij kl 
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and 
Mf = ~ ~ (U q- V)ij, fdj, i 

ij 

f = 0.08753 Ef [My] 2 . 
(53) 

The correlation effect is shown by examing the excitation energy E and transition 
moment M of only single electron-hole pair operator a f  a i. That is, Eq. (37) gives 
the following eigenvalue and moment: 

E = (A - F)  1/2 

F 2 
~ A  

2A 

M=l/ aj [A-rl 
, \ A + r J  ' 

(54) 

where A = Gij, i j is the excitation energy of the single configuration and F = Hij, i j 
is the correlation term. Equations (54) show that the correlation term gives an 
improvement on the excitation energies and oscillator strengths. The triplet state 
becomes instable when A < F. This problem may be solved by applying the higher 
random phase approximation [10]. 

3. Results and Discussions 

The electronic spectra and structure of anthracene crystal is a problem of 
wide interest. The present theory will be applied to its analysis. 

The SCF-MO's of the anthracene molecule were calculated by solving Fock's 
equation (6) with an approximation of the neglect of differential overlap [11-12]: 

X~(#)X~(p)=0 for a # b  

and of two center Coulomb integrals evaluated by Nishimoto-Mataga's method 
[13]. The excitation energies and oscillator strengths of anthracene molecule 
were obtained by employing Eqs. (52) and (53) and considering thirteen electron- 
hole pairs. The results are shown in Table 1. Comparing the observed values 

Table 1. Comparison between the calculated and observed values of transition energies (E s- in eV) 
and oscillator strengths of the anthracene molecule 

The present method The usual CI method Observed values 

E s f Ef f E s f 

I B~u 3.692 0.238 3.812 0.307 3.301 0.11 
II Beu 4.849 2.026 5.050 2.805 4.921 1.56 

III B~. 5.826 0.353 5.968 0.478 5.603 0.21 
IV Blu 6.088 0.135 6.235 0.189 6.52 0A1 
V Bzu 7.162 0.444 7.255 0.787 
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Fig. 1. Observed absorption spectra of anthracene crystal taken by Clark and Philpott with our 
assignment. 1 the crystalline spectra determined from reflection data [15], 2 the calculated values 

by the present theory 

with calculated ones, the excited states are assigned to the Blu, B:u, Bt,, B1, and 
Blu states in the region of from 4000A down to about 1700A. The Blu state is 
polarized to the short molecular axis and the B2, state to the long axis. In Table 1, 
the calculated values obtained by the present theory are compared with those 
by the usual CI method. The present theory gives better results in the calculation 
of excitation energies and oscillator strengths than the usual ASMO-SCF-CI 
method. Presumably, this improvement will be caused by the effect of electron 
correlation which will be efficient in decreasing the excitation energies and oscil- 
lator strengths of intense bands. 

Anthracene crystallizes in the monoclinic system with the space group 
C ~ h - P 2 ~ / a  and has two molecules per unit cell [7]. In this crystalline lattice, 
molecule 1 may be transformed into molecule 2 by reflection in the a c  plane 

Table 2. Character table for the group Czh and the selection rule of the exciton states 

E C 2 i ~ Transition moment a 

A o 1 1 1 1 d~ + d  s 
A ,  1 1 - 1  - 1 A A b d 1 - d  z 
B e 1 - 1 1 - 1 d s - d s 

B u 1 - 1  - - 1  1 a A dz + d  2 a , e  

" The lower subscript numbers the site in an unit cell and the upper subscripts S and A mean the 
symmetric (A~ and Big ) and antisymmetric (Btu and B2~ ) electron-hole pairs with respect to inversion 
of the anthracene molecule. 
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Table 3. Comparison between the calculated and observed values of transition energies (E: in eV) 
and oscillator strengths of the anthracene crystal 

The present theory Observed values [15] 

A, state B, state Au state B, state 

E/ fb E: f" fc E: fb Ef fa 

I B~, 3.627 0.508 3.531 0.152 0.010 3.137 0.248 3.161 0.076 
II B~u 4.512 0.123 5.656 1.305 3.442 4.623 0.16 5.776] 

III Blu 5.801 0.741 5.810 0.146 2.167 5.566 0.6 ~ 0.7 
IV Blu 6.069 0.428 6.043 0.175 0.229 5.975 0.06 6.52 ) 
V BI. 7.166 1.090 7.077 0.057 0.066 6.508 0.8 

followed by a glide at �89 The coefficients B~u(k)'s are determined from the 
character table of the group Czn of the wave vector k = 0 as displayed in Table 2. 
It shows that the crystal field mixing arises only between A o and Ba0, Bxu and B2, 
of the anthracene molecule and the allowed exciton states are A, (polarized parallel 
to b axis) and B, (polarized perpendicular to b axis) states. Table 3 gives the ex- 
citon state energies and oscillator strengths when the interactions for the inner 
zone were calculated to 50A. The absorption spectra of the anthracene crystal 
are reported by many workers [14, 15]. The crystalline spectra determined from 
reflectivity data by Clark and Philpott [15] are shown in the figure together 
with our assignment. 

The calculated Davydov splitting (EB--EAu) of the band I is -780cm -1 
while the observed value is 360 cm -1. This result will be improved when the long 
range terms are included as is shown in our previous paper [6]. The intensity 
ratio (fb/fa = 3.5) is in good agreement with the observed values (3.3) [15]. The 
Davydov splitting of the long axis polarized band II is a matter of controversial 
discussion, and the spectra [15] shown in the figure gives a value of 9300 cm -1. 
The earlier transmission measurement by Lyons and Morris [14] gives a value of 
10000cm -a for this splitting. Although a correct order of magnitude for this 
splitting was obtained in the earlier theories, but the agreement with the observed 
value was not so sufficient. Our calculated value in the present theory is 9200 cm- ~ 
The coincidence between the experiment and calculated value is quite satisfactory 
and it may be due to the correlation effect of re-electrons in high density solid 
state. Oscillator strengths are evaluated to be about 0.123 for the A, state and 
1.305 for the B, state. 

The bands IiI, IV and V at the higher energy region are originally derived 
from the molecular B~, states polarized to the short axis. These bands are at 
5.80, 6.07 and 7.12 eV for the A, states and the oscillator strengths are 0.74, 0.43 
and 1.09, respectively. The b-axis polarized spectrum has a peak at 5.57 eV, 
a weak shoulder at 5.98 eV and an intense peak at 6.51 eV and these are satis- 
factorily correlated with the calculated values. For the Bu exciton states, the 
corresponding levels are calculated at 5.81, 6.04 and 7.08 eV with f values of 
0.146, 0.176 and 0.006. The shoulder at the vicinity of 6.5 eV may be assigned to the 
overlapped band of lower two transitions and the last band may not be observed 
because of its weak intensity. 
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